1,888 research outputs found

    A note on quantum algorithms and the minimal degree of epsilon-error polynomials for symmetric functions

    Full text link
    The degrees of polynomials representing or approximating Boolean functions are a prominent tool in various branches of complexity theory. Sherstov recently characterized the minimal degree deg_{\eps}(f) among all polynomials (over the reals) that approximate a symmetric function f:{0,1}^n-->{0,1} up to worst-case error \eps: deg_{\eps}(f) = ~\Theta(deg_{1/3}(f) + \sqrt{n\log(1/\eps)}). In this note we show how a tighter version (without the log-factors hidden in the ~\Theta-notation), can be derived quite easily using the close connection between polynomials and quantum algorithms.Comment: 7 pages LaTeX. 2nd version: corrected a few small inaccuracie

    Error-Correcting Data Structures

    Get PDF
    We study data structures in the presence of adversarial noise. We want to encode a given object in a succinct data structure that enables us to efficiently answer specific queries about the object, even if the data structure has been corrupted by a constant fraction of errors. This new model is the common generalization of (static) data structures and locally decodable error-correcting codes. The main issue is the tradeoff between the space used by the data structure and the time (number of probes) needed to answer a query about the encoded object. We prove a number of upper and lower bounds on various natural error-correcting data structure problems. In particular, we show that the optimal length of error-correcting data structures for the Membership problem (where we want to store subsets of size s from a universe of size n) is closely related to the optimal length of locally decodable codes for s-bit strings.Comment: 15 pages LaTeX; an abridged version will appear in the Proceedings of the STACS 2009 conferenc

    A Survey of Quantum Learning Theory

    Get PDF
    This paper surveys quantum learning theory: the theoretical aspects of machine learning using quantum computers. We describe the main results known for three models of learning: exact learning from membership queries, and Probably Approximately Correct (PAC) and agnostic learning from classical or quantum examples.Comment: 26 pages LaTeX. v2: many small changes to improve the presentation. This version will appear as Complexity Theory Column in SIGACT News in June 2017. v3: fixed a small ambiguity in the definition of gamma(C) and updated a referenc

    Average-Case Quantum Query Complexity

    Get PDF
    We compare classical and quantum query complexities of total Boolean functions. It is known that for worst-case complexity, the gap between quantum and classical can be at most polynomial. We show that for average-case complexity under the uniform distribution, quantum algorithms can be exponentially faster than classical algorithms. Under non-uniform distributions the gap can even be super-exponential. We also prove some general bounds for average-case complexity and show that the average-case quantum complexity of MAJORITY under the uniform distribution is nearly quadratically better than the classical complexity.Comment: 14 pages, LaTeX. Some parts rewritten. This version to appear in the Journal of Physics

    Optimizing the Number of Gates in Quantum Search

    Get PDF
    In its usual form, Grover's quantum search algorithm uses O(N)O(\sqrt{N}) queries and O(NlogN)O(\sqrt{N} \log N) other elementary gates to find a solution in an NN-bit database. Grover in 2002 showed how to reduce the number of other gates to O(NloglogN)O(\sqrt{N}\log\log N) for the special case where the database has a unique solution, without significantly increasing the number of queries. We show how to reduce this further to O(Nlog(r)N)O(\sqrt{N}\log^{(r)} N) gates for any constant rr, and sufficiently large NN. This means that, on average, the gates between two queries barely touch more than a constant number of the logN\log N qubits on which the algorithm acts. For a very large NN that is a power of 2, we can choose rr such that the algorithm uses essentially the minimal number π4N\frac{\pi}{4}\sqrt{N} of queries, and only O(Nlog(logN))O(\sqrt{N}\log(\log^{\star} N)) other gates.Comment: 11 pages LaTeX. Version 2: small improvements in the proof

    Communication Complexity Lower Bounds by Polynomials

    Full text link
    The quantum version of communication complexity allows the two communicating parties to exchange qubits and/or to make use of prior entanglement (shared EPR-pairs). Some lower bound techniques are available for qubit communication complexity, but except for the inner product function, no bounds are known for the model with unlimited prior entanglement. We show that the log-rank lower bound extends to the strongest model (qubit communication + unlimited prior entanglement). By relating the rank of the communication matrix to properties of polynomials, we are able to derive some strong bounds for exact protocols. In particular, we prove both the "log-rank conjecture" and the polynomial equivalence of quantum and classical communication complexity for various classes of functions. We also derive some weaker bounds for bounded-error quantum protocols.Comment: 16 pages LaTeX, no figures. 2nd version: rewritten and some results adde

    Locally Decodable Quantum Codes

    Get PDF
    We study a quantum analogue of locally decodable error-correcting codes. A q-query locally decodable quantum code encodes n classical bits in an m-qubit state, in such a way that each of the encoded bits can be recovered with high probability by a measurement on at most q qubits of the quantum code, even if a constant fraction of its qubits have been corrupted adversarially. We show that such a quantum code can be transformed into a classical q-query locally decodable code of the same length that can be decoded well on average (albeit with smaller success probability and noise-tolerance). This shows, roughly speaking, that q-query quantum codes are not significantly better than q-query classical codes, at least for constant or small q.Comment: 15 pages, LaTe

    Rational approximations and quantum algorithms with postselection

    Get PDF
    We study the close connection between rational functions that approximate a given Boolean function, and quantum algorithms that compute the same function using postselection. We show that the minimal degree of the former equals (up to a factor of 2) the minimal query complexity of the latter. We give optimal (up to constant factors) quantum algorithms with postselection for the Majority function, slightly improving upon an earlier algorithm of Aaronson. Finally we show how Newman's classic theorem about low-degree rational approximation of the absolute-value function follows from these algorithms.Comment: v2: 12 pages LaTeX, to appear in Quantum Information and Computation. Compared to version 1, the writing has been improved but the results are unchange

    Quantum Zero-Error Algorithms Cannot be Composed

    Get PDF
    We exhibit two black-box problems, both of which have an efficient quantum algorithm with zero-error, yet whose composition does not have an efficient quantum algorithm with zero-error. This shows that quantum zero-error algorithms cannot be composed. In oracle terms, we give a relativized world where ZQP^{ZQP}\=ZQP, while classically we always have ZPP^{ZPP}=ZPP.Comment: 7 pages LaTeX. 2nd version slightly rewritte
    corecore